Global Demazure modules

Michael Finkelberg (HSE Moscow)

24-Jun-2020, 14:45-15:45 (6 years ago)

Abstract: The Beilinson-Drinfeld Grassmannian of a simple complex algebraic group admits a natural stratification into "global spherical Schubert varieties". In the case when the underlying curve is the affine line, we determine algebraically the global sections of the determinant line bundle over these global Schubert varieties as modules over the corresponding Lie algebra of currents. The resulting modules are the global Weyl modules (in the simply laced case) and generalizations thereof. This is a joint work with Ilya Dumanski and Evgeny Feigin.

mathematical physicsalgebraic geometryrepresentation theory

Audience: researchers in the topic


Geometric Representation Theory conference

Series comments: Originally planned as a twinned conference held simultaneously at the Max Planck Institute in Bonn, Germany and the Perimeter Institute in Waterloo, Canada. The concept was motivated by the desire to reduce the environmental impact of conference travels. In order to view the talks, register at the website: www.mpim-bonn.mpg.de/grt2020 . The talks from previous days can be be viewed at pirsa.org/C20030 ; slides from the talks are posted here: www.dropbox.com/sh/cjzqbqn7ql8zcjv/AAANB82Hh4t5XDc5RPcZzW0Aa?dl=0

Organizers: Tobias Barthel, André Henriques*, Joel Kamnitzer, Carl Mautner, Aaron Mazel-Gee, Kevin Mcgerty, Catharina Stroppel, Ben Webster*
*contact for this listing

Export talk to